The Most Comprehensive Source of Stereology Information on the Web

Share on FacebookTweet about this on TwitterShare on LinkedInEmail this to someoneShare on Google+
*Use the side navigation bar or the top navigation bar to browse the site.

 

Stereology Information for the Biological Sciences

This site introduces both basic and advanced concepts of Stereology. The emphasis is on the use of stereology in biological research, though anyone interested in learning concepts of stereology will find something of interest. The application of stereological methods to biological studies permits researchers to effectively and efficiently gather unbiased, accurate data. This site is dedicated to helping researchers understand the principles of design-based stereology and its advantages over less sophisticated approaches in quantitative histology.

What is Stereology?

Design-based stereology is a set of methods to ensure rigorous quantitative analysis of the size, shape, and number of objects. When properly used, stereology plays an important role in validating and rejecting experimental hypotheses in biological research. It produces results that are unbiased, efficient, and more reliable than other ad hoc quantitative analyses. Unbiased stereology provides an important contribution to the advancement in biological research by improving the consistency and dependability of quantitative analytical results produced in the laboratory and reported in scientific publications.

An Introduction to Stereology Probes

The most modern unbiased stereology probes are used to quantify aspects of biological tissue in a reproducible and efficient manner. These stereological probes are appropriate for many fields of basic and applied biological and medical research. These probes should always be used in conjunction with systematic random sampling.

OPTICAL FRACTIONATOR to estimate NUMBER of cells

OF-2

Estimate the size of cell populations with the optical fractionator in thick tissue sections. In this probe, sub-volumes are sampled and then are extrapolated to arrive at an estimate of the entire cell population. A virtual space called an optical disector is used in thick sections that can be oriented anyway you like. Disector counting rules are followed to avoid overestimating, and an oil objective lens is employed for imaging, since fine z-resolution is needed to find the leading edge of the cell and to have enough focal planes to determine if it is in the disector. Note: avoid counting pieces of cells when you really want to count whole cells.    OPTICAL FRACTIONATOR

 

NUCLEATOR to estimate VOLUME of cells

Estimate individual cell volumnucleator-2es with the nucleator. A point in the cell is identified, then one to four rays are marked and their mean length is used in the formula for the volume of a sphere, generating an estimate of the cell volume. The volume estimate is number-weighted; the sampling is done with a disector in thick sections so that it is not more likely to sample larger cells than smaller cells. It is important to use a method to select cells without bias by picking them in a manner that does not favor any position of the cell in space; you won’t overestimate by sampling too many larger cross-sections or underestimate by sampling too many smaller cross-sections.    NUCLEATOR

 

CAVALIERI POINT-COUNTING to estimate VOLUME of regions

Cavalieri-1

This probe is versatile in that it can be used on thin optical or physical sections that are oriented according to the preference of the researcher. A fraction of the tissue is marked with points over the region(s) of interest, and an extrapolation is carried out to arrive at the estimate. Unbiased estimates of regional volume are easy to obtain efficiently using Cavalieri point-counting.     CAVALIERI/POINT-COUNTING

 

SPACEBALLS to estimate LENGTH of fibers and vessels

spaceballs-1

Estimate length of biological filaments such as axons or blood vessels without facing the herculean task of tracing them all. Instead the intersections of the filaments with a virtual sphere are marked and converted to a length estimate. Thick sections may be oriented as the researcher prefers. This probe is implemented along with the fractionator method; a volume-fraction is sampled and extrapolated using the reciprocal of the volume fraction to arrive at the estimate of length.    SPACEBALLS

 

ISOTROPIC FAKIR to estimate SURFACE of membranes

fakir-2b

To estimate surface area, a triplet of line segments that has the property of being isotropic in space is used to probe in thick sections. Intersections of the triplet with the surface are counted and a formula is used to arrive at an estimate of the surface area; the more intersections recorded the greater the surface. Like the other regional probes on this page, thick, preferentially oriented sections are used and the fractionator method works to make an extrapolation based on the fraction of volume that was sampled.     ISOTROPIC FAKIR

more probes including solutions for thin tissue sections

 

Slit Shadow 1 Sharpest

Recent Noteworthy Stereology Publications

Published papers using unbiased stereology; last updated on 01.18.2017.

starindicates that the researchers did a good job reporting stereological parameters

Pharmacological rescue of adult hippocampal neurogenesis in a mouse model of X-linked intellectual disability

Neuropathological Consequences of Gestational Exposure to Concentrated Ambient Fine and Ultrafine Particles in the Mouse

Control of amygdala circuits by 5-HT neurons via 5-HT and glutamate co-transmission

Hypervulnerability of the adolescent prefrontal cortex to nutritional stress via reelin deficiency

Minocycline Suppresses NLRP3 Inflammasome Activation in Experimental Ischemic Stroke

starJNK1 controls adult hippocampal neurogenesis and imposes cell-autonomous control of anxiety behaviour from the neurogenic niche

Prenatal administration of letrozole reduces SDN and SCN volume and cell number independent of partner preference in the male rat

The effects of early-life stress on dopamine system function in adolescent female rats

Modulation of Benzo[a]Pyrene Induced Anxiolytic-Like Behavior by Retinoic Acid in Zebrafish: Involvement of Oxidative Stress and Antioxidant Defense System

Vitamin D3 protects against Aβ peptide cytotoxicity in differentiated human neuroblastoma SH- SY5Y cells: A role for S1P1/p38MAPK/ATF4 axis

Cortical hemorrhage-associated neurological deficits and tissue damage in mice are ameliorated by therapeutic treatment with nicotine

L-F001, a Multifunction ROCK Inhibitor Prevents 6-OHDA Induced Cell Death Through Activating Akt/GSK-3beta and Nrf2/HO-1 Signaling Pathway in PC12 Cells and Attenuates MPTP-Induced Dopamine Neuron Toxicity in Mice

starDesign-Based Stereology for Evaluation of Histological Parameters

Maternal choline supplementation in a mouse model of Down syndrome: Effects on attention and nucleus basalis/substantia innominata neuron morphology in adult offspring

The postrhinal cortex is not necessary for landmark control in rat head direction cells

Continue reading “Recent Noteworthy Stereology publications”

Slit Shadow 1 Sharpest

What’s New in Stereology.info

Added on 09.25.2015
Added on: 11.05.2015
Reviewed paper: Schmitz, C. and P.R. Hof (2005) Design-Based Stereology in Neuroscience. Neuroscience 130, 813-831. Added on: 03.10.2016
In 2014 researchers used Stereo Investigator in 698 peer-reviewed papers – citing it nearly 3x more than all other stereology systems combined.

Learn how to prepare your tissue accurately and efficiently.
Learn more about estimating your probe
Added on 04.10.2015

Slit Shadow 1 Sharpest

color-logo-small

Sponsored by MBF Bioscience
developers of Stereo Investigator, the world’s most cited stereology system